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Sampling stored-product insect pests:
a comparison of four statistical sampling
models for probability of pest detection

David Elmouttie,a,b Paul Flinn,c Andreas Kiermeier,b,d Bhadriraju
Subramanyam,e David Hagstrumf and Grant Hamiltona,b∗

Abstract

BACKGROUND: Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult
owing to species biology and behavioural characteristics. The design of robust sampling programmes should be based on
an underlying statistical distribution that is sufficiently flexible to capture variations in the spatial distribution of the target
species.

RESULTS: Comparisons are made of the accuracy of four probability-of-detection sampling models – the negative binomial
model,1 the Poisson model,1 the double logarithmic model2 and the compound model3 – for detection of insects over a broad
range of insect densities. Although the double log and negative binomial models performed well under specific conditions,
it is shown that, of the four models examined, the compound model performed the best over a broad range of insect spatial
distributions and densities. In particular, this model predicted well the number of samples required when insect density was
high and clumped within experimental storages.

CONCLUSIONS: This paper reinforces the need for effective sampling programs designed to detect insects over a broad range of
spatial distributions. The compound model is robust over a broad range of insect densities and leads to substantial improvement
in detection probabilities within highly variable systems such as grain storage.
c© 2013 Society of Chemical Industry
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1 INTRODUCTION
Developing robust sampling programmes for biological systems
that capture the innate variability in the system in question
is inherently complex.4 Biological organisms can be difficult to
target for numerous reasons. For example, organisms may vary
their distributions over space and time, influencing detection
rates.3,5 This suggests that the design of the sampling programme
and the underlying statistical distribution used need to be
sufficiently flexible to capture variations in the spatial and temporal
distribution of the target species. Furthermore, the area that is to
be sampled may not always be conducive to sampling owing
to site accessibility constraints, among other factors. Therefore,
to increase sampling efficiency, the statistical framework and
sampling programme should be capable of being used under a
broad range of conditions.

An area that has seen significant research with regards

to sampling ecology has been stored-grain insects.2,3,5–7 The
presence of insects in stored grain is problematic, as they lead
to restrictions in trade on account of biosecurity concerns,

commodity losses and spoilage.8–10 Therefore, sampling in stored
grains has typically been undertaken to meet two distinct
objectives: (a) to estimate the mean density of insects for
integrated pest management (IPM); (b) for pest detection. Pest

detection is necessary for pest management decisions within
the grain industries, as many exporting and importing countries
have a zero tolerance threshold when sampling grain shipments.8

Additionally, in recent years, an increased emphasis on exotic pest
invasion has heightened biosecurity efforts. Detection methods
also provide useful tools when attempting to detect particular
species or types of insect within stored grain, and thus can be used
for resistance monitoring programmes.
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However, targeting insects within storages is complex because,
although grain stored in various storage structures may appear
to be homogeneous, insects that infest grain bulks can display
varied spatial distributions, and will often be clustered.11,12 The
distribution of insects within a storage will also vary from species
to species, between storage types, as a result of treatment and
fumigation measures and in relation to external and internal

climatic conditions.11–14 It is therefore essential that specific
sampling methods are utilised to determine the correct number
of samples to be taken from a predetermined area while sampling
within a heterogeneous system.

Typically in ecology, detection approaches developed where
species are clustered are based on Poisson or the negative
binomial probability functions.1 The negative binomial approach
considers species clustering behaviour via the incorporation of
a dispersion parameter. While the Poisson does not explicitly
or implicitly consider species clustering behaviour, the simple
function based on mean density has been demonstrated to
provide a good approximation to the negative binomial in certain
instances.1 Hagstrum et al.2 found that the relationship between
the probability of insect detection and the average insect density
in grain is described by a double logarithmic model. This model
is based on a two-step process. The first step considers ‘the
logarithmic increase in sample units occupied by more than
one insect with an increase in mean density’, and the second
step considers the ‘logarithmic increase in the number of insects
occupying the infested sample units’.15 Subramanyam et al.7

illustrated that the model accurately predicted mean densities
based on the relative proportion of sample units containing
insects, explaining 84–90% of variation in mean densities. This
model has therefore historically formed the basis of a number of
grain sampling programmes.2,5,7,10,13

More recently, Elmouttie et al.3 adapted an alternative
methodology based on an explicit translation of the clustering
behaviour of pests into a statistical function for use in stored
grain. Rather than considering sample-to-sample variation, this
method considers that stored grain can be separated into two
distinct components. The spatially heterogeneous distribution
of insects within a storage and the density of the pests have
been shown to have an important influence on pest detection.3

These quantities can be estimated in a straightforward way, and
this model considers them directly. Using this model, Elmouttie
et al.3 demonstrated a method for determining sampling effort
by directly considering the density of individuals and the level
of heterogeneity within a sampled area. While the methods of
Hagstrum et al.2 and Elmouttie et al.3 have been shown to be
useful, it is as yet unknown under which conditions each of
these models should be used and whether there are conditions
where models either over- or underpredict the number of samples
required.

The aim of this paper is therefore to compare the four described
statistical sampling models to determine which models estimate
the correct number of samples for a given probability of detection
under a range of insect distribution. Using historical data from
an extensive sampling programme of farm storages by Flinn
et al.,16 comparisons are made of the Poisson, the negative
binomial, the double logarithmic model and the compound model
developed by Elmouttie et al.3 Given that insect pests occur at a
range of densities in a range of environmental conditions, these
comparisons have been made to determine which models are
robust enough to use under a wide variety of environmental
conditions.

2 MATERIALS AND METHODS
2.1 Data
The data used in this study were collected over a 7 month
period commencing in July 2002 and were reported by Flinn
et al.16 In brief, four independent vertical bins, located in Kansas,
United States, with a diameter of approximately 4.75 m and
containing on average 30 t of wheat, were sampled monthly.
Each bin was artificially infested monthly with 400 individuals
of three insect species, Rhyzopertha dominica, Cryptolestes
ferrugineus and Tribolium castaneum, between July and October
2002. Two independent bins each had been allocated to two
distinct treatments, namely control (bins were not aerated)
and aeration (bins were aerated on a regular basis). Sampling
was conducted using a pneumatic grain sampler (Probe-A-
Vac; Cargill, Minneapolis, MN). An intensive monthly sampling
programme was conducted, with twenty-one 3 kg samples
drawn from each bin on each sampling occasion, seven samples
from each of three height strata (0–0.8 m, 0.8–1.6 m, 1.6–2.4
m). In each stratum, three samples were drawn 0.3 m from
the bin centre, and four samples 0.6 m from the bin wall.
All samples were processed using an Insectomat motorized
inclined sieve (Samplex Ltd, Willow Park, UK) to separate insects
from grain. The number of live adult insects of each species
was counted in each sample immediately after extraction.
For each species in each bin, a total of 21 samples × 7
occasions = 154 counts of live adult insects were available for
analysis.

2.2 Model parameter estimation
The four sampling models used were: (i) the compound model
(CM) proposed by Elmouttie et al.;3 (ii) a negative binomial model
(NBM) proposed by Green and Young;1 (iii) a Poisson model
(PM) proposed for sampling by Green and Young;1 (iv) the double
logarithmic model (DLM) proposed by Hagstrum et al.2 The models
represent a range of commonly utilised models to determine the
number of samples in biological systems, agricultural systems

and in the field of acceptance sampling.1–3,17 For each individual
model, the corresponding parameters were estimated separately
(see below) for each species, bin and sampling occasion from the
associated 21 insect counts. In addition, parameter estimates were
obtained for the total insect numbers (ignoring species) for each
bin and sampling occasion, resulting in a total of (3 species + all-
species total) × 4 bins × 7 occasions = 112 sets of parameter
estimates per model.

As described by Subramanyam and Hagstrum,15 parameters A,
B and C for the DLM were estimated for each of the four bins using
the non-linear least-squares (nls) regression function in R.18 The
rate of infestation (λ) for the CM is representative of the mean
density (insects kg−1 wheat samples) of insects within the infested
portion of the grain bulk. Hence, for a particular sampling period,
λ was calculated by dividing the sum of live insects in positive
samples (samples containing insects) by the number of positive
samples. For the negative binomial, PM and DLM, the sample
mean (x) represents the mean density throughout all samples,
that is, both positive samples containing live insects and negative
samples without live insects. Hence, x for these models was
calculated by calculating the sum of all insects within all samples
divided by the total number of samples for a sampling event, i.e.
21. For example, if 42 insects were detected in the 21 samples
drawn, x would be 2 (42/21). The dispersion parameter of the
negative binomial was calculated using the method described by
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Southwood and Henderson19 and illustrated in equation (2b). This
methodology ensured that each model had individually generated
parameter estimates from corresponding datasets (experimental
bins).

The resulting parameter estimates were then used according
to the following equations to calculate the number of samples
(n) required to achieve a desired power of 1 – β , where β = 0.05
represents the probability of a type 2 error, i.e. failing to detect
an insect in n samples, and hence acceptance is governed by a
zero tolerance approach. This was again done separately for each
species, silo and sampling occasion.

2.2.1 Compound model
For the CM, the number of samples is given by

ncm = logβ

log
(
1 − p + p e−wλ

) (1)

where p is the proportion of infested samples within a bin, w
represents the weight of the sample drawn (kg) and λ represents
the mean density of insects in the infested portion of the samples.

2.2.2 Negative binomial model
For the NBM, the number of samples is given by

nnbm = −1

k

logβ

log
(

1 + x
k

) (2a)

where x is the mean density of insects throughout the lot, and k
represents a dispersion parameter that can be estimated using the
method presented by Southwood and Henderson,19 that is

k =
(

x2

s2 + x

)
(2b)

where s represents the standard deviation of insect numbers
between samples.

2.2.3 Poisson model
For the PM, the number of samples is given by

npm = −1

x
logβ (3)

2.2.4 Double logarithmic model
For the DLM, the number of samples is given by

ndlm = logβ

log (1 − q)
(4a)

where q is the probability of a sample having no insects, which is
given by

q = 1 − (A e)(−Bx) + (1 − A) e(−Cx) (4b)

where parameters A, B and C describe the relationship between
the proportion of sample units that are infested and the mean
density of insects.

2.3 Model comparisons
A Monte Carlo simulation study consisting of 10 000 iterations
was undertaken to determine which of the four models performed
best across each individual dataset (four experimental bins). At
each iteration, one individual bin was randomly selected and the
number of samples (n) for each model was calculated as described
above. The number of samples was then used to select randomly
from the companion experimental bin with the same treatment
– this was done for each model. For example, consider the trial
with a Poisson model. Parameter estimates for the Poisson model
were obtained using the data from control bin 1, and the number
of samples was calculated from this. This number of samples was
subsequently used to sample randomly from control bin 2 (with
replacement from the 21 available counts) over the same sampling
occasion. This methodology provided independence between the
parameter estimates and the data that were sampled, such that
a bin used to estimate the number of samples was not sampled
in an individual simulation experiment. A detection was recorded
when at least one of the n samples drawn contained at least
one insect. The number of detections from the 10 000 iterations
was recorded and the percentage detection rate was determined.
Simulations were not conducted for any model when zero insects
were detected for a particular time period in either companion
bin.

Chi-square (χ2) analyses were used to determine any statistically
significant differences in the percentage detection rates between
different models. Root mean square errors (RMSEs) were also
calculated to measure the differences between the expected
probability of detection (β = 0.95) and the values observed from
the simulation results for each model. This provided a measure
of accuracy for each model to the expected 0.95 probability of
detection. RMSE is given by

RMSE =

√√√√√∑
[(

β − �β
)2

]
nc

(5)

where β is the expected value (0.95) and �β is the observed
value, and nc represents the number of combinations (expected
versus observed) compared.

3 RESULTS
Mean insect densities varied between treatments, sampling
periods and insect species (Table 1). In general, insect population
densities increased throughout the experimental period, reaching
their highest in the months of October and November (Table 1).
A notable decline in insect densities was recorded in aerated
bins from November to January, and this also corresponded to a
reduction in sample units with insects (Table 1).

Simulations were not conducted for the July sampling period
in control and aeration bins, as bins 1, 2 and 4 had no insects
detected for this period. Similarly, simulations were not conducted
for aeration bins in December, as zero insects were detected in
one bin for this period (Table 1).

The number of samples n varied across models, with those
needed for the PM being consistently lower than the three
other models examined (Table 2). Across the four models
examined, mean percentage insect detection with n grain samples
did not differ significantly when data from control bins were
examined (Table 3). This pattern was consistent when species data
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Table 1. Mean ± 1 SE insect densities across all treatments within four independent grain bins. The number in parentheses represents the total
number of subsamples (3 kg) containing insects of the 21 samples drawn in each sampling event

Aeration Control

Species Time Bin 1 Bin2 Bin 3 Bin4

R. dominica July 0.00 (0) 0.00 (0) 0.047 ± 0.21 (1) 0.00 (0)

C. ferrugineus July 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

T. castaneum July 0.00 (0) 0.00 (0) 0.00 (0) 0.047 ± 0.21 (1)

R. dominica August 0.33 ± 0.57 (6) 0.28 ± 0.46 (6) 0.66 ± 0.85 (10) 0.23 ± 0.43 (5)

C. ferrugineus August 0.14 ± 0.35 (3) 0.14 ± 0.35 (3) 0.23 ± 0.53 (4) 0.047 ± 0.21 (1)

T. castaneum August 0.47 ± 1.03 (5) 0.66 ± 1.01 (8) 1.76 ± 3.49 (11) 0.23 ± 0.53 (4)

R. dominica September 2.81 ± 4.33 (8) 10.19 ± 19.77 (16) 28 ± 14.18 (21) 25.47 ± 17.39 (21)

C. ferrugineus September 0.95 ± 1.32 (10) 0.76 ± 1.37 (7) 3.85 ± 3.59 (16) 0.85 ± 0.85 (13)

T. castaneum September 2.38 ± 3.16 (14) 2.09 ± 3.85 (13) 3.33 ± 3.29 (18) 7.66 ± 7.53 (20)

R. dominica October 24.47 ± 19.03 (21) 45.19 ± 40.58 (20) 169 ± 88.26 (21) 176.33 ± 127.38 (21)

C. ferrugineus October 5.09 ± 5.82 (14) 4.42 ± 5.97 (16) 37.66 ± 25.12 (21) 9.61 ± 8.07 (18)

T. castaneum October 1.66 ± 1.90 (15) 2.61 ± 4.34 (15) 12.00 ± 14.18 (17) 12.57 ± 12.78 (19)

R. dominica November 15.76 ± 15.63 (17) 58.8 ± 107.42 (21) 96.14 ± 68.53 (21) 138.28 ± 100.69 (21)

C. ferrugineus November 0.42 ± 1.16 (4) 0.66 ± 1.27 (5) 89.09 ± 81.49 (21) 44.47 ± 28.41 (21)

T. castaneum November 1.00 ± 1.78 (10) 2.61 ± 5.28 (13) 9.38 ± 16.59 (20) 12.85 ± 23.81 (19)

R. dominica December 0.00 (0) 24.38 ± 72.79 (5) 43.52 ± 33.20 (21) 109.61 ± 68.23 (21)

C. ferrugineus December 0.00 (0) 0.33 ± 1.06 (2) 96.04 ± 115.12 (20) 76.90 ± 101.48 (21)

T. castaneum December 0.00 (0) 1.00 ± 1.34 (10) 6.00 ± 10.55 (14) 13.80 ± 28.19 (15)

R. dominica January 1.47 ± 4.47 (4) 16.66 ± 49.62 (6) 45.90 ± 46.37 (21) 127.80 ± 125.67 (21)

C. ferrugineus January 0.095 ± 0.300 (2) 0.00 (0) 388.95 ± 861.21 (19) 65.47 ± 68.95 (19)

T. castaneum January 0.095 ± 0.30 (2) 0.47 ± 0.98 (5) 30.23 ± 83.82 (19) 5.09 ± 3.65 (18)

simulations were compared independently or in combination in
control bins, with the exception of the PM for T. castaneum in
control bins 1 and 2 (Table 3). In contrast, however, the PM differed
from all other models across all species when examining aeration
bin data (Table 3). This was a result of the lower insect densities
within aeration bins (Table 1). No significant difference in mean
percentage detections were recorded between the DLM, NB and
CM models for either individual species comparisons or combined
simulation comparisons (Table 3).

RMSE estimates show that, although the four models did not
differ significantly, the CM typically had a lower RMSE than the
other models tested (Table 4). Across all treatment and species
combinations, the CM generally had the lowest RMSE estimates.
This corresponded to a higher number of samples typically being
estimated by the compound model (Table 2). The NB model,
however, had the lowest RMSE on five occasions, although
differences in RMSE between the NB and CM were very small
over these five periods (Tables 3 and 4).

To this point, simulation results for each simulation have been
grouped across all time periods. However, insect densities varied
significantly throughout the study in control and aeration bins, as
did the distribution of insects in the grain bins (inferred from
the number of containing insects) (Table 1). Although mean
percentage success was constantly lower for the PM, prediction
was most accurate during the August sampling period and did not
differ significantly from other models during this period (Table 3).
During all sampling periods the CM performed well and was the
most or second most accurate model tested (Tables 3 and 5).
The NBM and DLM performed well in four of the five sampling
periods and were not statistically different from the CM model
over these four periods. In the January sampling period, however,
where insect density was relatively high although restricted to
a limited portion of the grain lot, prediction fell well below the

0.95 threshold for the NBM and DLM (Table 3). Results for the CM
differed significantly from the DLM and NBM for the January period
and were closest to the 0.95 detection threshold. Further, RMSE
estimates illustrate that the CM was the most accurate model over
three of the five time periods examined and always ranked in the
top two models.

4 DISCUSSION AND CONCLUSIONS
Over the broad range of insect densities examined in this
study, the CM proposed by Elmouttie et al.3 consistently
achieved a probability of detection closer to 0.95 than any
other models tested. Other models performed slightly better
in some circumstances (see Table 5, September and October);
however, when this occurred, the difference in RMSE between
the best performing model and the CM was small. The CM was
the most robust model of all tested, across a range of spatial
distributions and insect densities. This illustrates the flexibility of
the CM, as it is a model that is suitable for detecting insects
over a range of insect spatial distributions. There are a number of
difficulties when developing sampling programmes for biological
and agricultural systems. Firstly, the environment that is sampled
is often heterogeneous, leading to irregular usage of space by
the target species. This is further complicated by the fact that the
level of heterogeneity or the level of irregularity is often difficult
to perceive or quantify. Secondly, target species may have specific
behaviours (mobility, preference for moisture, dockage, etc.) that
may give rise to varied distribution and densities of the target
species within the area being sampled. It is therefore important
to develop sampling protocols based on an understanding and
statistical design that can encompass a broad range of possible
spatial distributions.
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Table 2. The number of samples n required for 95% probability of insect detection as generated from each modela for each sampling species
combination

Aeration bin 1 Aeration bin 2 Control bin 3 Control bin 4

Time Species CM NBM PM DLM CM NBM PM DLM CM NBM PM DLM CM NBM PM DLM

Aug R .dominica 14 7 9 11 15 9 10 14 7 5 4 5 18 11 13 14

Aug C. ferrugineus 32 20 21 24 32 20 21 26 21 14 13 14 98 41 63 67

Aug T. castaneum 13 10 6 9 8 6 4 7 4 5 2 3 21 14 13 14

Sep R .dominica 3 3 1 4 2 3 1 3 1 1 1 1 1 1 1 1

Sep C. ferrugineus 6 4 3 6 8 6 4 6 2 2 1 2 5 3 3 4

Sep T. castaneum 3 3 1 4 3 4 1 3 2 2 1 4 1 1 1 1

Oct R .dominica 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

Oct C. ferrugineus 3 2 1 3 2 2 1 3 1 1 1 1 2 1 1 1

Oct T. castaneum 3 3 2 4 3 4 1 3 2 1 1 1 1 1 1 1

Nov R .dominica 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1

Nov C. ferrugineus 16 13 7 9 12 7 4 7 1 1 1 1 1 1 1 1

Nov T. castaneum 6 6 3 5 3 5 1 3 1 3 1 2 1 3 1 1

Dec R .dominica — — — — 11 5 1 2 1 1 1 1 1 1 1 1

Dec C. ferrugineus — — — — 16 18 9 12 1 1 1 1 1 1 1 1

Dec T. castaneum — — — — 6 4 3 5 3 3 1 2 2 3 1 1

Jan R .dominica 14 10 2 5 9 5 1 2 1 1 1 1 1 1 1 1

Jan C. ferrugineus 48 30 31 35 — — — — 1 2 1 1 1 1 1 1

Jan T. castaneum 48 30 31 35 13 9 6 9 1 4 1 1 2 1 1 2

a CM – compound model; NBM – negative binomial model; PM – Poisson model; DL – double logarithmic model.

Here, four statistical sampling models were compared, two
proposed for grain sampling2,3 and two used commonly for
broader ecological purposes.1 Of the four models examined, the
Poisson model consistently underpredicted the number of samples
required to detect insects at a 0.95 probability of detection level.
This is not surprising, as it is the most restrictive model and does
not contain a mechanism to capture or describe clustering or
heterogeneity. The PM consistently underpredicted the number
of samples required, particularly within aeration bins, where insect
density was found to be more patchily distributed albeit often
locally abundant (Tables 1 and 2). This is problematic for insect
sampling, as it is not uncommon for insects to be heterogeneously
distributed in grain masses,11 although at a relatively high density,
violating the assumption of the Poisson. Therefore, density-based
approaches such as the Poisson will tend to underestimate the
number of samples required for detection when sampling for a
target that is not at very low densities.

In contrast, the NBM, DLM and CM performed well, with
prediction typically reaching the desired 0.95 probability of
detection threshold. The NBM and DLM, however, were not as
robust as the CM in extreme situations where many samples
contained no insects but positive samples contained a high density
of insects. In such instances, the DLM and NBM underpredicted the
number of samples required to detect insects. In Table 3 it is shown
that the mean detection success declined dramatically for the NBM
and DLM in the January sampling period. This corresponded to
data representing very high population densities within a small
number of samples, resulting in data that were highly skewed
(Table 1). Although mechanistically different, the NBM and DLM
were most similar of all models tested. This was observed in
both mean percentage simulation success and RMSE estimates.
Hagstrum et al.2 previously noted this, showing that, of a range of
models tested, the DLM and NBM characterised a range of data
most closely.

As found in the present study, insect distribution and density can
vary significantly within storages (Table 1). Of all models tested, the
CM performed well consistently, predicting an adequate number
of samples to detect at the desired 0.95 probability of detection
over a broad range of data. The model was found not to be
overly influenced by population mean or variance attributes. For
the CM, a higher predicted value for the number of samples n
(when compared with the other models) resulted in a probability
of detection closer to the desired 0.95 level. Not surprisingly, when
multiple models reached the equivalent probability of detection,
the number of samples predicted was also similar (Table 2). This
illustrates that using the CM does not result in added effort (a
greater number of samples) without a corresponding increase in
probability of detection. The results from RMSE analysis (Tables 4
and 5) show that the CM is the most effective and accurate model
to use for the detection of insects within grain storages.

An added benefit of the CM is the direct biological relevance of
the parameters. Although models such as the DLM and NBM can be
used to estimate the number of samples, the parameters required
are often difficult to estimate. This may be, in part, why Poisson
and binomial-based approaches have gained such popularity in
the literature.17,19 Although these approaches often do not best
describe the system or provide the most robust estimates for
the number of samples required, model parameters are easily
estimated. Similarly to the NBM and DLM, the CM proposed by
Elmouttie et al.3 requires estimation of multiple parameters: p
– the proportion of infestation; λ – the mean density within
the infested portion of the site. However, unlike the DLM and
NBM, parameters in the CM can be simply estimated from data
and do not require statistical or computational expertise. The
approach used here, for example, could be used in a real storage
system containing grain stored in multiple bins or bunkers. Grain
producers or bulk handlers/elevator managers could intensively
sample a single storage to develop parameter estimates and,
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Table 3. Mean (±1 SE) percentage insect detections for all simulation combinations and χ2 significance at P = 0.05. Numbers in italic bold indicate
models that are significantly different from the model closest to 95% probability of detectiona

Month Treatment Bin Species CM NBM PM DLM χ2 b

Combined Control 3 Combined 91.00 ± 0.027 91.44 ± 0.032 84.28 ± 0.043 88.67 ± 0.037 n

Combined Control 3 R. dominica 96.67 ± 0.024 94.67 ± 0.044 93.50 ± 0.055 94.83 ± 0.043 n

Combined Control 3 C. ferrugineus 88.33 ± 0.055 86.50 ± 0.080 81.50 ± 0.092 85.67 ± 0.078 n

Combined Control 3 T. castaneum 88.00 ± 0.065 93.17 ± 0.056 77.83 ± 0.092 85.50 ± 0.081 y

Combined Control 4 Combined 96.22 ± 0.012 95.72 ± 0.014 94.44 ± 0.020 94.83 ± 0.020 n

Combined Control 4 R. dominica 100.00 ± 0.00 99.83 ± 0.002 97.17 ± 0.016 99.83 ± 0.001 n

Combined Control 4 C. ferrugineus 97.33 ± 0.016 97.00 ± 0.016 86.17 ± 0.049 97.33 ± 0.016 y

Combined Control 4 T. castaneum 91.33 ± 0.032 90.33 ± 0.032 86.17 ± 0.049 87.33 ± 0.054 n

Combined Aeration 1 Combined 91.02 ± 0.021 88.50 ± 0.036 69.14 ± 0.061 85.57 ± 0.050 y

Combined Aeration 1 R. dominica 91.06 ± 0.036 90.40 ± 0.064 72.40 ± 0.147 81.80 ± 0.125 y

Combined Aeration 1 C. ferrugineus 94.50 ± 0.026 89.00 ± 0.048 77.75 ± 0.095 91.75 ± 0.049 y

Combined Aeration 1 T. castaneum 88.20 ± 0.043 86.20 ± 0.077 59.00 ± 0.054 84.40 ± 0.068 y

Combined Aeration 2 Combined 97.50 ± 0.007 95.14 ± 0.014 84.79 ± 0.043 95.93 ± 0.015 y

Combined Aeration 2 R. dominica 98.20 ± 0.008 95.80 ± 0.017 82.40 ± 0.095 94.20 ± 0.037 y

Combined Aeration 2 C. ferrugineus 96.25 ± 0.021 91.25 ± 0.038 84.00 ± 0.067 94.25 ± 0.025 y

Combined Aeration 2 T. castaneum 97.80 ± 0.011 97.60 ± 0.009 87.80 ± 0.068 99.00 ± 0.003 y

August Aeration 1 & 2 Combined 97.33 ± 0.016 92.17 ± 0.028 90.33 ± 0.048 96.00 ± 0.022 n

September Aeration 1 & 2 Combined 94.33 ± 0.017 93.83 ± 0.028 71.67 ± 0.044 96.00 ± 0.013 y

October Aeration 1 & 2 Combined 96.00 ± 0.015 95.50 ± 0.018 83.00 ± 0.057 97.50 ± 0.009 y

November Aeration 1 & 2 Combined 92.75 ± 0.030 93.83 ± 0.036 79.00 ± 0.090 88.50 ± 0.039 y

December Aeration 1 & 2 Combined 0.00 0.00 0.00 0.00 n/a

January Aeration 1 & 2 Combined 89.25 ± 0.064 78.50 ± 0.103 52.75 ± 0.167 68.25 ± 0.142 y

a CM – compound model; NBM – negative binomial model; PM – Poisson model; DL – double logarithmic model.
b Significant at P = 0.05; y = yes; n = no.

Table 4. Root mean square errors (β = 0.95) for all sampling modelsafor each species and combined species data in both aeration and control bins.
Numbers in bold represent the most accurate models (i.e. lowest RMSE)

Modelb

Species Treatment CM NBM PM DLM

R .dominica Aeration bin 1 0.0823* 0.1362 0.3698 0.2824
C. ferrugineus Aeration bin 1 0.0458* 0.1017 0.2395 0.0912
T. castaneum Aeration bin 1 0.1101* 0.1777 0.3758 0.1733
R. dominica Aeration bin 2 0.0363 0.0346* 0.2296 0.0743
C. ferrugineus Aeration bin 2 0.0384* 0.0753 0.1602 0.0433
T. castaneum Aeration bin 2 0.0352 0.0326* 0.1543 0.0405
R. dominica Control bin 3 0.0577* 0.0987 0.1252 0.0950
C. ferrugineus Control bin 3 0.1409* 0.1985 0.2457 0.1986
T. castaneum Control bin 3 0.1626 0.1273* 0.2679 0.2064
R. dominica Control bin 4 0.0500 0.0485* 0.0500 0.0485*

C. ferrugineus Control bin 4 0.0440 0.0408* 0.0426 0.0440
T. castaneum Control bin 4 0.0802* 0.0856 0.1407 0.1431
Combined Control bin 3 0.1286* 0.1476 0.2220 0.1742
Combined Control bin 4 0.0602* 0.0615 0.0897 0.0909
Combined Aeration bin 1 0.0857* 0.1444 0.3401 0.2039
Combined Aeration bin 2 0.0365* 0.0493 0.1861 0.556

a CM – compound model; NBM – negative binomial model; PM – Poisson model; DL – double logarithmic model.
b An asterisk (*) indicates the model with the lowest RMSE.

using those estimates, determine the number of samples needed
to sample adjoining storages adequately. Alternatively, parameter
estimates for CM parameters p and λ could be developed from
prior information or expert opinion, as they have a direct biological
relevance.20 This would be significantly more difficult when
developing estimates for parameter k in the negative binomial

model or for parameters A, B and C in the double logarithmic
model, as they are based on an interaction between multiple
factors.

The present study has demonstrated the importance of using
a statistical sampling model that is robust and based on a broad
range of data. Using data over a broad temporal scale, it was
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Table 5. Root mean square errors (β = 0.95) for all sampling modelsa using combined species data for each sampling period in aeration bins.
Numbers in bold represent the most accurate models (i.e. lowest RMSE)

Modelb

Species Treatment CM NBM PM DLM

August Aeration 0.0440* 0.0704 0.1187 0.0507

September Aeration 0.0383 0.0644 0.2540 0.0306*

October Aeration 0.0361 0.0398 0.1760 0.0324*

November Aeration 0.0716* 0.0838 0.2753 0.1095

December Aeration — — — —

January Aeration 0.1250* 0.2352 0.5124 0.3629

a CM – compound model; NBM – negative binomial model; PM – Poisson model; DL – double logarithmic model.
b An asterisk (*) indicates the model with the lowest RMSE.

possible to show the importance of considering length of storage
and grain temperature, as insect density will increase with time,
and distributions vary in relation to external factors. In large
grain-producing countries such as Australia, the United States
and Canada, these factors will be influenced by local climate
and environment. It is therefore important to acquire robust
sampling data across a geographic and seasonal continuum so
that better parameter estimates can be developed to improve
sampling models. These data, coupled with a robust statistical
model such as the CM, will ensure that sampling programmes are
adequate and utilise the correct number of samples for detection
at the desired level.
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